$$\hat{y} = a + bx$$

Residual = data - model

OR

Residual = observed – predicted

$$z = \frac{x - \mu}{\sigma}$$
 (Model based)

$$z = \frac{x - \overline{x}}{s}$$
 (Data based)

$$x = \mu + z\sigma$$

For independent events, P(A and B) = P(A)P(B)For dependent events, P(A and B) = P(B)P(A|B)P(A or B) = P(A)+P(B) - P(A and B)

Statistics	\overline{x}	\overline{x}	$\overline{x}_1 - \overline{x}_2$
Sampling Distribution	σknown	σ NOT known	
Mean	$\mu(\overline{x}) = \mu$	$\mu(\overline{x}) = \mu$	
Standard Deviation (σ known)	$\sigma(\overline{x}) = \frac{\sigma}{\sqrt{n}}$		
Standard Error		$SE(\overline{x}) = \frac{s}{\sqrt{n}}$	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Confidence Interval	$\overline{x} \pm z^* \left(\frac{\sigma}{\sqrt{n}} \right)$	$\overline{x} \pm t_{df}^* \left(\frac{s}{\sqrt{n}} \right)$	$(\overline{x}_1 - \overline{x}_2) \pm t_{df}^* SE$
Sample Size	$n = \left(\frac{z^* \sigma}{ME}\right)^2$		
Test Statistic	$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$	$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{SE}$